Feed aggregator

Structured eigenvalue/eigenvector backward errors of matrix pencils arising in optimal control

WySR RSS Feed - Sat, 2018-11-17 02:14

Eigenvalue and eigenpair backward errors are computed for matrix pencils arising in optimal control. In particular, formulas for backward errors are developed that are obtained under block-structure-preserving and symmetry-structure-preserving perturbations. It is shown that these eigenvalue and eigenpair backward errors are sometimes significantly larger than the corresponding backward errors that are obtained under perturbations that ignore the special structure of the pencil.

Perturbation results and the forward order law for the Moore-Penrose inverse of a product

WySR RSS Feed - Wed, 2018-11-14 20:57

New expressions are given for the Moore-Penrose inverse of a product $AB$ of two complex matrices. Furthermore, an expression for $(AB)\dg - B\dg A\dg$ for the case where $A$ or $B$ is of full rank is provided. Necessary and sufficient conditions for the forward order law for the Moore-Penrose inverse of a product to hold are established. The perturbation results presented in this paper are applied to characterize some mixed-typed reverse order laws for the Moore-Penrose inverse, as well as the reverse order law.

Convergence of a modified Newton method for a matrix polynomial equation arising in stochastic problem

WySR RSS Feed - Mon, 2018-11-12 23:01

The Newton iteration is considered for a matrix polynomial equation which arises in stochastic problem. In this paper, it is shown that the elementwise minimal nonnegative solution of the matrix polynomial equation can be obtained using Newton's method if the equation satisfies the sufficient condition, and the convergence rate of the iteration is quadratic if the solution is simple. Moreover, it is shown that the convergence rate is at least linear if the solution is non-simple, but a modified Newton method whose iteration number is less than the pure Newton iteration number can be applied. Finally, numerical experiments are given to compare the effectiveness of the modified Newton method and the standard Newton method.

Estimators Comparison of Separable Covariance Structure with One Component as Compound Symmetry Matrix

WySR RSS Feed - Mon, 2018-11-05 17:57

The maximum likelihood estimation (MLE) of separable covariance structure with one component as compound symmetry matrix has been widely studied in the literature. Nevertheless, the proposed estimates are not given in explicit form and can be determined only numerically. In this paper we give an alternative form of MLE and we show that this new algorithm is much quicker than the algorithms given in the literature.\\ Another estimator of covariance structure can be found by minimizing the entropy loss function. In this paper we give three methods of finding the best approximation of separable covariance structure with one component as compound symmetry matrix and we compare the quickness of proposed algorithms.\\ We conduct simulation studies to compare statistical properties of MLEs and entropy loss estimators (ELEs), such us biasedness, variability and loss. Another estimator of covariance structure can be found by minimizing the entropy loss function. In this paper we give three methods of finding the best approximation of separable covariance structure with one component as compound symmetry matrix and we compare the quickness of proposed algorithms. We conduct simulation studies to compare statistical properties of MLEs and entropy loss estimators (ELEs), such us biasedness and variability.

Pages

Subscribe to UW Digital aggregator